Code: EC2T5

I B.Tech - II Semester – Regular/Supplementary Examinations April - 2018

ELECTRONIC DEVICES & CIRCUITS (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours Max. Marks: 70

PART - A

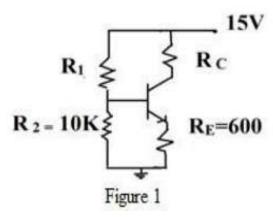
Answer *all* the questions. All questions carry equal marks 11x 2 = 22 M

1.

- a) Define Potential.
- b) Mention the function of X-deflection plates in a cathode ray tube.
- c) Write the differences between Zener break down and Avalanche break down.
- d) Determine the current flowing in the Si diode when 0.6V reverse bias is applied at room temperature and the reverse saturation current at room temperature is 10µA.
- e) Draw the Bridge rectifier circuit with input and output waveforms.
- f) Compare the performance of L and π section filters.
- g) Define the relation among α , β and γ .
- h) Transistor works as an amplifier, justify.
- i) What is the need for biasing?
- j) Define Thermal runaway.
- k) A JFET has $V_p = -4.5V$, $I_{dss} = 10mA$ and $I_{ds} = 2.5mA$. Determine V_{GS} .

PART - B

Answer any *THREE* questions. All questions carry equal marks. $3 \times 16 = 48 \text{ M}$


2. a) Draw the diagram of CRT and Explain

8 M

- b) What is the trajectory of a charged particle entering in a direction perpendicular to a uniform magnetic field?Explain.8 M
- 3. a) What is PN junction diode? Explain the working of PN junction under forward bias and reverse bias with neat diagram.8 M
 - b) Write short notes on: i) Photo diode ii) LED 8 M
- 4. a) A Full-wave rectifier is connected with an inductor filter, derive expression for the ripple factor and draw relevant waveforms.

 8 M
 - b) Design LC filter for a Full-wave rectifier circuit to provide an output voltage of 10 V with a load current of 200 m A and the ripple is limited to 2%, f=50Hz. 8 M
- 5. a) Draw the drain characteristics of depletion mode MOSFET. Explain different operating regions of MOSFET. 8 M

- b) For the NPN transistor connected in CE mode with V_{CC} =12V, V_{BB} =5V, I_{C} =15 mA, V_{CE} =5 V, β =99, V_{BE} =0.7 V and R_{E} =55 Ω Find I_{B} , R_{B} and R_{C} .
- 6. a) Explain the working of collector Base bias circuit using NPN transistor. 8 M
 - b) For the circuit shown in Figure-1, I_C =2mA, β =100 & V_{CE} =3V. Calculate R_1 & R_C . Assume V_{BE} =0.6v. 8 M

